東吳大學教師授課計劃表

檔案產生時間:2025/9/1 上午 05:15:00
本表如有異動,於4小時內自動更新
一、課程基本資料 Course Information
科目名稱 Course Title:
(中文)巨量資料概論
(英文)INTRODUCTION OF BIG DATA
開課學期 Semester:114學年度第1學期
開課班級 Class:資科一B
授課教師 Instructor:張宗銓
科目代碼 Course Code:BDD10402 單全學期 Semester/Year:單 分組組別 Section:
人數限制 Class Size:60 必選修別 Required/Elective:必 學分數 Credit(s):3
星期節次 Day/Session: 二56  三78單 前次異動時間 Time Last Edited:114年08月15日01時20分
※ 因授課需求教室如安排於語練教室需加收語言實習費
課程與聯合國永續發展目標關聯性 Course match with UN SDGs (Sustainable Development Goals)
>SDG4 優質教育 Quality Education
課程與社會力關聯性 Course match with Employment Soft Skills
>溝通表達 Communication Expression
>持續學習 Continuous Learning
>人際互動 Interpersonal Interaction
>團隊合作 Teamwork
>問題解決 Problem Solved
>創新 Innovation
>資訊科技應用 Information Technology Applications
>工作責任與紀律 Work Responsibilities and Discipline
>抗壓性 Stress Resistance
資料科學系基本能力指標 Basic Ability Index
編號
Code
指標名稱
Basic Ability Index
本科目對應之指標
Correspondent Index
達成該項基本能力之考評方式
Methods Of Evaluating This Ability
1商學、管理與統計基礎能力
Basic abilities of business, management and statistics
  
2邏輯思考與解決問題能力
Abilities to think logically and to resolve problems
》作業成績
3資料分析與實務應用能力
Integration ability on data analysis and practical application
  
4溝通與表達能力
Communication and self-expression abilities
》課堂討論與表現
》報告(含個人或小組、口頭或書面、專題、訪問、觀察等形式)
5資訊科技應用能力
Applied information technology ability
》報告(含個人或小組、口頭或書面、專題、訪問、觀察等形式)
》作業成績
6程式演算能力
Programming abilities
》作業成績
》實作(含分組演練/合作等)
7跨領域整合創新能力
Interdisciplinary innovation abilities
  
8巨量資料處理與應用能力
Abilities to analyze big data and develop its applications
  
二、指定教科書及參考資料 Textbooks and Reference
(請修課同學遵守智慧財產權,不得非法影印)
●指定教科書 Required Texts
1.Self-edited teaching materials
2.https://wesmckinney.com/book/
●參考書資料暨網路資源 Reference Books and Online Resources
1. Lillian Pierson, "Data Science For Dummies, 3rd Edition", For Dummies
2. Joel Grus, "Data Science from Scratch: First Principles with Python, 2nd Edition", O'Reilly Media
3. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, 1st Edition", EMC Education
4. Brian Ward, "How Linux Works, 3rd Edition: What Every Superuser Should Know", No Starch Press
5. Nigel Poulton, "Getting Started with Docker", Nielsen Book
6. Nigel Poulton, "Docker Deep Dive", Nielson Book
三、教學目標 Objectives
生處在巨量資料的時代,學習如何有效運用資料進行決策是組織提升競爭力的關鍵之一。本課程目標是讓學生學習未來從事資料科學工作可能會運用到的資訊工具,接著透過簡單的案例讓學生可以運用這些資訊工程認識與體驗進行資料科學工作的流程。
Since we live in the era of big data, learning how to utilize data for decision-making effectively is essential for organizations to enhance their competitiveness. The objectives of this course are as follows:
1. Teach students the information tools they may use in future data science careers.
2. Use simple case studies to enable students to understand and experience the workflow of data science tasks based on these tools.
四、課程內容 Course Description
整體敘述 Overall Description
Part 1: Introduction to the course and data science process
Part 2: Introduction to information tools related to the data science process
Part 3: Case studies and Term Project Presentation
●分週敘述 Weekly Schedule
週次 Wk 日期 Date 課程內容 Content 備註 Note

1

9/9,9/10 Introduction to Course   

2

9/16, Data Science and Big Data Analytics   

3

9/23,9/24 Data Preparation   

4

9/30, Case Study: Data Preparation   

5

10/7,10/8 Data Exploration   

6

10/14, Case Study: Data Exploration   

7

10/21,10/22 Basic in Machine Learning   

8

10/28, Case Study: Basic in Machine Learning   

9

11/4,11/5 Midterm Exam   

10

11/11, Term Project Presentation (1)   

11

11/18,11/19 Term Project Presentation (2)   

12

11/25, Term Project Presentation (3)   

13

12/2,12/3 Term Project Presentation (4)   

14

12/9, Term Project Presentation (5)   

15

12/16,12/17 Term Project Presentation (6)   

16

12/23, Term Project Presentation (7)   

17

12/30,12/31 Term Project Presentation (8)   

18

1/6, Course Reflection   
五、考評及成績核算方式 Grading
本科目 ☑同意期末退修且不需面談輔導
配分項目 Items 次數 Times 配分比率 Percentage 配分標準說明 Grading Description
出席510% 
報告130% 
分組作業130% 
課堂討論230% 
配分比率加總 100%  
六、授課教師課業輔導時間和聯絡方式 Office Hours And Contact Info
●課業輔導時間 Office Hour
上課後公佈
●聯絡方式 Contact Info
研究室地點 Office: EMAIL:raymond0820@gmail.com
聯絡電話 Tel: 其他 Others:
七、教學助理聯絡方式 TA’s Contact Info
教學助理姓名 Name 連絡電話 Tel EMAIL 其他 Others
八、建議先修課程 Suggested Prerequisite Course
九、課程其他要求 Other Requirements
十、學校數位學習平台及教師個人網址 University’s Web Portal And Teacher's Website
學校數位學習平台 University’s Digital Learning Platform:https://tronclass.scu.edu.tw
教師個人網址 Teacher's Website:https://systw.net
其他 Others:
十一、計畫表公布後異動說明 Changes Made After Posting Syllabus